

AFRL-IF-RS-TR-2006-134
Final Technical Report
April 2006

MITIGATING THE INSIDER THREAT USING
HIGH-DIMENSIONAL SEARCH AND MODELING

Telcordia Technologies, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. S470

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-134 has been reviewed and is approved for publication

APPROVED: /s/

 DAVID KRZYSIAK
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, Jr.
Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
April 2006

3. REPORT TYPE AND DATES COVERED
Final Jul 05 – Jan 06

4. TITLE AND SUBTITLE

MITIGATING THE INSIDER THREAT USING HIGH-DIMENSIONAL SEARCH
AND MODELING

6. AUTHOR(S)

Eric VanDenBerg, Shambhu Uphadyaya, Phi Hung Ngo, Muthu
Muthukrishnan and Rajago Palan

5. FUNDING NUMBERS
C - FA8750-04-C-0249
PE - 62301E/62304E
PR - S470
TA - SR
WU - SP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 PRIME: SUB: SUB:
Telecordia Technologies, Inc. SUNY Buffalo Rutgers University
Piscataway NJ Buffalo NY Davidson Road
 Piscataway NJ

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-134

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: David Krzysiak, IFGA, 315-330-7454, David.Krzysiak@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; Distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

In this project a system was built aimed at mitigating insider attacks centered around a high-dimensional search engine
for correlating the large number of monitoring streams necessary for detecting insider attacks. Further
accomplishments in this project include an insider attack modeling and analysis tool called MAPIT, developed by SUNY
Buffalo, and a novel sketch-based anomaly detection sensor developed by Rutgers University, which can be used for
detecting anomalies in IP source/destination addresses, as well as for defining small-space user profiles, e.g., file
accesses.

15. NUMBER OF PAGES
52

14. SUBJECT TERMS

Insider threat, high-dimensional search, reasoning 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1 Summary ... 1
2 Introduction... 2

2.1 System overview... 3
3 Methods, assumptions and procedures ... 5

3.1 Sensor Network... 5
3.2 Search Engine ... 11
3.3 Response Engine... 19
3.4 MAPIT: Modeler and Auditor Program for Insider Threat 21

4 Results and discussion .. 24
5 Conclusions... 30
6 References... 31
7 Appendix: Red Team Exercise Report ... 33

7.1 Introduction... 33
7.2 Methods, Assumptions and Procedures .. 34
7.3 Results and Discussion ... 34
7.4 Conclusions... 38
7.5 Red Team Exercise Rules of Engagement.. 39
7.6 Red Team Tests... 44

List of symbols, abbreviations and acronyms... 48

Table of Figures
Figure 1: System Architecture .. 4
Figure 2: The Basic Sensor Network .. 6
Figure 3: An aggregated sensor .. 6
Figure 4: Typical sequence of events in precursor detection.. 18
Figure 5: Juniper Adaptor communication flow... 21
Figure 6: An Overview of MAPIT’s Architecture.. 22
Figure 7: Distance of each of 3 exemplar states to pattern of alerts in current time
window (last 20 seconds).. 25

1

1 Summary

In this project, “Mitigating the Insider Threat via High-dimensional Search and
Modeling”, we have built a system aimed at mitigating insider attacks consisting of the
following components: a High-dimensional search engine, a graphical Insider Modeler
and Analyzer, a Response Engine, and a Sensor Network.

Insider attacks are significantly harder to defend against than outsider attacks. Part of the
problem is that the insider has authorized access to the system, and often knowledge of
target resources. Consequently, fusion or correlation of possibly hundreds of different
alerts is required. This correlation is accomplished using high-dimensional search and
anomaly detection. Underlying assumptions are that the insider will trigger at least some
sensors prior to and during his attack. This assumption best fits an insider with up to
moderate knowledge about his malicious goal. The system is quite effective in detecting
attacks committed by such insiders, as was shown in a demonstration at the July 2005 PI
meeting.

In testing the system, we have mainly focused on information ex-filtration attacks. In
such attacks, we gave the ‘insiders’ information about the nature of the malicious target, a
file with sensitive (military) information, and approximate location information. With this
kind of information, we detected 3 out of 4 insider attacks on our test-bed in the July
demonstration, while the 4th insider did not get near a malicious goal.

We have integrated a response engine in our system to generate an automatic response to
detected attacks. While originally envisioned to thwart attacks in a time span of minutes,
the detection/response cycle is in fact fast enough to generate an automatic response in
seconds, as was shown in the red team exercise on Nov. 4. This exercise mostly focused
on the ability of insiders to evade sensors, and to accomplish reading or altering of the
information before the response had been activated. Some one-shot attacks were possible,
and the system was not yet fast enough to thwart those. We also were able to take some
of the lessons learned from this exercise and improve sensors, as well as improve
interaction between detection and response engine.

SUNY Buffalo has developed a graphical insider attack modeling and analysis tool,
called MAPIT. This tool has been used e.g. to heuristically find the most likely attack
paths an insider can take to reach his/her malicious goal(s). It has been tested on the
Telcordia testbed, as well as on (part of) the Hackfest 2004 network.

A further innovation of note accomplished in this project is a novel sketch-based anomaly
detection sensor developed by Rutgers University, which can be used for detecting
anomalies in ip source / destination addresses, as well for defining small-space user
profiles for e.g. file accesses.

2

2 Introduction

Insiders pose a substantial threat by virtue of their knowledge of and access to their
employers’ systems and/or databases, and their ability to bypass existing physical and
electronic security measures through legitimate means [1]. The insider threat has been
recognized as a critical security problem, although the statistics reported are varying
(from 70% to 59% of successful intrusions are committed by insiders, see e.g. [12, 14]).
Here, an insider is defined in as anyone who is or has been authorized access to an
information system.

Several workshops have been devoted to the subject; see e.g. [10], but until recently, real
world case studies and data were scarce. During the course of this project, two studies by
the US Secret Service/CERT [1,11] and a survey [12] have appeared. The studies target
illicit cyber activity in the banking and finance industry, and computer system sabotage in
critical infrastructure sectors respectively. Some of the notable observations from the
banking and finance study are, that insiders planned their actions, the actions often did
not require much technical sophistication, and the attacks were detected by various
means, including system logs to obtain attacker identities in 74% of the cases.

Detecting insider malfeasance requires fusion of possibly hundreds of different
measurements and alerts to get the overall picture of the system. Current approaches to
anomaly detection cannot handle hundreds of different attributes simultaneously.
Furthermore, insiders may be in a position to subvert or fool some sensors installed in the
system, requiring us to work with partially falsified or missing sensor data. Insiders may
be aware of pre-defined attack models, requiring us to go beyond the simple signature-
based approach that is being used to detect them. Even when we do suspect an insider
attack, we may not be able to respond for fear of “collateral damage” which may cause
more harm by itself. Finally, we do not have systems that can detect patterns of
malfeasance that can scale to Internet-sized networks. We propose a new solution
methodology that addresses the above.

Our proposed approach to insider threats is inspired by the human cognitive model of recalling
complex past experiences similar to a given situation and synthesizing a response that takes
advantage of that experience. The approach has focused on the following research goals:
• Developing a sensor architecture that can monitor a very large set of different system

parameters from a very large system that range from physical to network to application
layer, including end-host sensors, making it much harder for insiders to act without
triggering at least some sensor alerts.

• Reducing the dimensionality problem created by the very large amount of sensor data using
a high-dimensional Search Engine (that is traditionally used in searching documents on the
web) to create a ranked list of annotated states from the network’s history that are
sufficiently similar to the current state.

• Detecting insider threats that are similar to threats observed in the past based on the insight
that most attacks tend to be similar or variations of past attacks.

3

• Learning new states over time by maintaining a network history repository that contains
historical states that are annotated with attack and precursor information.

• Developing an Insider threat modeler and analyzer tool, which uses a novel graph-
theoretical approach to model and analyze malicious insiders in an organization network as
the first layer of defense.

• Responding to threats that have been detected within minutes and thwarting those attacks to
protect critical services: a Response Engine that performs an impact analysis of the
potential attack on critical services and synthesizes a response that minimizes collateral
damage. The response engine concepts were originally developed through funding from
DARPA’s Dynamic Coalitions program.

This innovative approach is based on several underlying assumptions:
• Since the detection/response cycle is envisioned to be in the order of minutes, this

approach is most suitable for detecting slow, stealthy insider attacks, rather than
‘instant’ attacks such as worm-attacks. However, often even fast, noisy insider attacks
may have detectable precursors long in advance [1]. For instance, it has been noted
that insiders often plan their actions long in advance, and may even discuss them with
co-workers or family members.

• Since our approach relies in part on the availability of alerts from a large number of
sensors, another assumption is that the inside attacker will always trigger at least
some sensor alerts, and cannot subvert or circumvent them all. This may rely on
appropriate policies being in place.

2.1 System overview
We divide the entire process of combating insider threat into three stages:

a) Pre-Attack Stage
In the pre-attack phase, we represent organizational information in a graph-based
model that allows us to analyze statically any pre-existing insider threats. The
insider threat scenarios so discovered can be used to harden policies, place
sensors, and train our detection system by annotating simulated attack states.

b) Attack Detection Stage
Using a search engine, we create annotated clusters of similar states in a high-
dimensional space, which in turn, enables us to categorize the current state of the
system in terms of attack precursors. For this purpose, we represent and store the
historical states of the system with annotations of attacks, precursor functions, and
response strategies.

c) Post-Detection Stage
We then thwart these attacks by doing an impact analysis of the potential attacks
on critical services and by synthesizing and implementing appropriate network
reconfigurations that minimize collateral damage.

Our System Architecture is shown in Figure 1 below:

4

Figure 1: System Architecture

The architecture shown in Figure 1 incorporates a large number of Sensors that monitor a
large number of system parameters and can provide alerts when suspicious behavior is
observed. The architecture is open so that a wide variety of sensors can be incorporated.
The goal is to make sure that such a large number of parameters are monitored so that no
insider threat can go unnoticed without generating at least some type of an alarm.
Aggregators, filters, and detectors are used for reducing the problem state space without
losing key information.

The Network State Repository in Figure 1 contains historical states of the system that
are annotated with attack, precursor and response information. The core of the network
state is a set of sensor alerts. This data gets updated when new previously unknown
attacks are observed so that the system can learn over time.

The Search Engine in Figure 1 is based on dimension-reduction techniques such as
Singular Value Decomposition (SVD). One of the first large-scale information retrieval
engines, LSI (based on SVD) was developed at Telcordia Technologies (then Bellcore).
This gave us confidence that SVD-based methods will be successful in the context of
high-dimensional anomaly and attack detection. Similar to the searched document list,
the search engine will give us the list of states that are most similar to the query state. Our
method does not depend on pre-scripted attack models and at the same time is able to
classify the current state of the network in terms of attack precursors.

Sensor

Sensor

Sensor

Sensor

Post-
processing

Filter

Aggregator

Search
Engine

Response
Engine

Network State
Repository

Host
Scans

Audit
Scans

State
Data

Traffic
Measure-

ments

Reconfiguration

Top K
List

Refined
QueriesN

E
T
W
O
R
K

High-Dimensional
Search

Insider
Modeler

and
Analyzer

Organizational
data

Labels and
filters for states

Sensor

Sensor

Sensor

Sensor

Post-
processing

Filter

Aggregator

Search
Engine

Response
Engine

Network State
Repository

Host
Scans

Audit
Scans

State
Data

Traffic
Measure-

ments

Reconfiguration

Top K
List

Refined
QueriesN

E
T
W
O
R
K

High-Dimensional
Search

Insider
Modeler

and
Analyzer

Organizational
data

Labels and
filters for states

5

The Insider Modeler and Analyzer component serves multiple purposes in the overall
scheme. A security analyst can develop a layout of the organization’s computation and
personal resources and provide this as an input to the component, which in turn, statically
produces scenarios or weaknesses leading to successful insider attacks. Consequently, the
infrastructure can be hardened against these attacks. This is its main functionality. In
order to enhance attack detection, these scenarios can also be used to sensitize the
network repository and guide the placement of sensors.

The Response Engine in Figure 1 applies to the problem of insider threat the concept of
the logic-based policy engine that was developed in the Telcordia’s “Smart Firewalls”
project funded by DARPA’s Dynamic Coalitions program. Given the top K list from the
search engine listing the most likely attacks, the response engine logically analyzes the
impact of these attacks on critical services. The impact analysis enables us to infer the
overall attack risk. The response engine generates the necessary reconfigurations in the
network to thwart the attack, which can be pushed into the network automatically, thus
protecting critical services before they are attacked. The response engine can respond to
events that are low certainty but potential high impact. In the particular case where we
cannot classify with high certainty that the state is an attack precursor, but the impact on
critical services is high, the response engine can act proactively and reconfigure the
network with minimal damage to legitimate services.

The following section discusses the design and implementation of each of the
components of our approach in more detail.

3 Methods, assumptions and procedures

3.1 Sensor Network
To defend any system we have to be able to monitor it well and at all times. For this
project, we have install sensors at multiple system layers, to monitor applications,
servers, hosts and other devices on which the functioning of the service depends. The
data and alerts generated by the sensors comprise a high-dimensional state space that our
developed search engine (discussed in the next section) can search. The installed sensors
include both end-host sensors (applications, audit logs, etc) and network sensors (router
traffic, aggregate and flow-data).

3.1.1 Architecture

Our primary goals in designing the sensor network for this project were scalability and
extensibility, e.g. the ability to add arbitrary sensors. Furthermore, to enable forensic
analysis / refined search, the raw alerts from the sensors should be available to the back-
end search process. We prefer to concentrate the ‘intelligence’ of the system in the search
engine, and not burden the sensors beyond collecting data. However, there are occasions
when it is useful to filter or aggregate data for a noisy sensor or set of sensors, in order to

6

sanitize or reduce the volume of data. This has led us to the basic sensor architecture
shown in
Figure 2.

Figure 2: The Basic Sensor Network

To meet the goal of scalability, we first perform data volume reduction by letting the
sensors do alert-driven reporting. Alerts can be triggered either e.g. by a signature or by
exceedance of the sensor values of a given threshold for ‘normal behavior’. Furthermore,
they can report a new event, such as a user login or logout. This alert-driven reporting is
meant to reduce data volume without significant information loss. Furthermore, we
isolate the sensors and their post-processing as much as possible. Thus, a typical sensor
will perform only minimal post-processing, which consists of any filtering specific to that
filter followed by normalization of the alerts to common format. The filtering is
generally simple in nature: e.g. to collect together identical or near identical alerts and
produce a single alert with a count. In cases where no filtering is required or where no
post-processing is required, those steps would be removed from the chain.

The stream of alerts is joined when it enters the database. We chose this mode of
operation because database technology is readily available for handling high volumes of
transactions concurrently. Additionally, this approach serves to decouple the sensor
network from the search system, so the sensors and search engine can operate in parallel.
For the data collection front-end of our system, the sensor, filter, and post-processor
boxes shown in
Figure 2 will be repeated several times with a common database. Furthermore, a
cornerstone of our design is to be able to incorporate data from as many different sensors
as possible, some of which may pre-aggregate as a natural function, as depicted in Figure
3

Figure 3: An aggregated sensor

7

We have re-used available sensors as much as possible. The decision to work with alert-
driven sensor reporting also aids the goal of extensibility, since our architecture is
designed to easily integrate several existing alert-driven sensors. Since the Intrusion
Detection Message Exchange Format (IDMEF) is rapidly becoming accepted as the
‘lingua-franca’ of IDS message formats, we will adopt this format for alert reporting of
individual sensors. Any sensors that do not natively produce messages according to this
standard can be adapted. Officially, “The purpose of the Intrusion Detection Message
Exchange Format (IDMEF) is to define data formats and exchange procedures for sharing
information of interest to intrusion detection and response systems, and to the
management systems which may need to interact with them”[3].

We have also used IDMEF as the format for reporting attacks detected by the Search
Engine to the Response Engine.

The alerts are stored in the database in an IDMEF-based schema. By using a standard
format, we are also able to take advantage of existing tools for handling alerts. This
allows our database to be the central database for security monitoring rather than
requiring that alerts be duplicated to another database for other processing. Additionally,
as more and more tools produce IDMEF as their native format, we are able to delete the
normalization step in our pipeline to potentially reduce processing requirements and
latency.

As a matter of fact, different sensors already available and producing IDMEF output may
interpret certain fields in the IDMEF XML standard slightly differently. However, as we
will discuss in the design of the High-dimensional network state description and Search
Engine below, the effect of different interpretations of the IDMEF standard on the search
engine results will be kept to a minimum. This is because it is the ‘pattern of alerts’ that
guides the search, rather than the actual content of the IDMEF. Important fields of the
IDMEF message, which do affect search (e.g. “Source”, “Classification” and “Target”),
are unlikely to be open to interpretation.

To implement large parts of this design, we have leveraged the approach of the Prelude
Project. Prelude (www.prelude-ids.org) is an IDS management system available as open
source. It has a structure similar to ours for managing sensors. A key functionality of
Prelude is collecting alerts from a variety of sensors and inserting them into a database.
Our evaluation showed no concurrency issues and using an existing tool allowed us to
focus more of our attention on more innovative part of our system.

Prelude can deal with sensors in one of two ways. A sensor (or a post-processor; in fact,
also our Search Engine) can be made aware of Prelude. This involves adding some code
that will connect to the Prelude manager (the central process that collects alerts) and
calling routines to marshal and transmit alerts. The second approach is to use prelude-lml
or the Log Monitoring Lackey. This is a process that watches a log file for changes. It
matches those changes against a set of user provided regular expressions and ``accepts''
lines that match. Based on constant data (such as the type of alert typically) and

8

information from the regular expression (e.g. an IP address, user ID or log-in name), it
builds an alert and sends it to Prelude.

Externally, Prelude uses IDMEF as its alert format. Because the full XML for alerts is
inefficient to transmit and relatively expensive to parse, it uses a binary implementation
of IDMEF internally to speed transmission and processing. This approach worked well
for as we could use available IDMEF tools as needed, but did not have to pay all of the
cost of carrying that format around.

3.1.2 Sensor Categories used for Insider Attacks

3.1.2.1 Network-based IDS
Network-based IDS (NIDS) have the desirable capability of sensing attacks on multiple
targets using a single sensor. Both signature-based NIDS such as Snort (www.snort.org,
for which the Prelude team has provided a patch to report in Prelude’s binary IDMEF
format) and anomaly based NIDSs based on e.g. packet headers) are of use. Signatures
can for instance be used to detect known attacks/vulnerabilities, or, particularly for
insiders, e.g. honeytoken [2] exploits. The definition of a honeypot is ‘an information
system resource whose value lies in unauthorized or illicit use of that resource’. A
honeypot is typically a computer, whereas a honeytoken can be any digital entity, such as
a spreadsheet, word processor document, or login and password.

To help detect previously unknown attacks, Rutgers University has developed novel
‘sketch’ based network anomaly detectors based on any attribute φ from an IP packet
header, e.g. one from (time, sourceIP, destinationIP, size, srcport, destport). For example,
let the attribute φ which is monitored be the Src IP address. Then the signal S has
domain]1||,...,0[−U , where 322|| =U and][iS is a given measure at i , such as the
number of connections, packet counts, bytes transferred, etc. to Src IP address i during a
given time interval. At the high level, we consider two signals, 0S (normal) and

1S (current). The problem is to detect when a) 0S and 1S .differ significantly, and b) find
i such that][1 iS and][0 iS differ significantly, in this case, i is the ‘culprit’ or target. The
Rutgers team has focused on version b) of the problem. Significant change could mean
large absolute or relative difference in case of aggregates such as counts or the Jacard
coefficient [18] between sets.

Keeping exact measure of S for each Ui∈ requires large space overhead for dense
signals: |)(|UO . However, in most applications, it suffices to produce approximate
answers to detect big changes in the signal. An innovative solution is found using a
streaming algorithm. By ‘streaming algorithm’ [19], we mean a method that works in
sub-linear space, and handles each update efficiently, typically in sub-linear time.
Although such algorithms cannot solve most problems on input signal S exactly, they
will succeed with probability at least δ−1 at being accurate to some prescribed error ε
for some small parameters δ and ε . Note: for the insider threat, often the number of IP
addresses (e.g. in a military/enterprise network) may be sufficiently small to implement

9

the full space, exact signal. Furthermore, the change detection can be periodic or
instantaneous. If a small delay can be tolerated, experiments on the MIT Lincoln Labs
IDS evaluation data for 1999 show that the periodic, sketch based solution has great
space/speed advantages, and has almost as accurate detection as the full space solution.
This result creates very good confidence in the potential for these sketch / group testing
based methods.

3.1.2.2 Host-based IDS
In a similar vein, we will make use of host-based IDS (HIDS) technology. One of the
difficulties in catching an insider is that he/she often knows the machine that he wishes to
attack and may even have access to that machine or be able to gain access to the machine
via social engineering rather than launching an attack over the network. Thus, while it is
critical to monitor the network for less sophisticated insiders, the more dangerous insider
may not leave any “footprints” within the network. Moreover, if network traffic is
encrypted, signature-based network-based IDS are not effective. However, we expect that
insiders who are making illegitimate accesses to data will likely stray from the normal
behavior patterns of the account they are using at some point. This might include
searching the file systems as opposed to quickly moving to the normal work environment
or otherwise trying things to see what will happen as opposed to behaving like someone
who has been trained on a system.

We have made use of HIDS-tools such as the file-integrity checker samhain (http://la-
samhna.de/samhain/)), which already include the semantics of specific anomalous
behaviors (e.g. those exhibited by root-kit attacks). Samhain can report alerts to a Prelude
manager in its binary IDMEF format. It periodically checks files to see if various
attributes such as checksum or access times have changed. Modifications are compared
with a user specified policy that can be as detailed as per-file. If a modification falls
outside of the policy, an alert is generated. While samhain can alert that a modification
has occurred (e.g. on a read access to a file), it does not include information by whom.

3.1.2.3 Audit / Application log sensors
We have several audit- and application log sensors for Linux hosts, and build user-
profiles for anomaly detection, in order to detect ‘straying from normal behavior’. These
have been implemented using Prelude’s flexible ‘Log Monitoring Lackey’ prelude-lml, a
sensor which continuously scans a specified list of log-files, compares entries against a
given list of regular expressions, and sends an alert to Prelude manager (and the IDMEF
based database) upon finding a match.

In an attempt to avoid the latency of samhain and to more accurately track users, we
concluded that we needed support from the kernel. Although we wrote LSM code as a
baseline sensor early on in the project, for the Red Team Exercise we re-tasked SELinux
as a demonstration of what could be done. In practice, keeping an SELinux security
policy up-to-date on a working machine is a difficult task. However, in permissive mode
SE-Linux will issue a warning message describing what policy-based actions it would
have taken if it had been in enforcement mode. Moreover, those messages contain
information including what class of user is attempting to perform those operations. In

10

order to make use of this, we modified the standard security policy supplied with Fedora
to have a class per user so that we could track-back an access to a particular user.
Additionally, we added files of interest to the security policy so that on particular types of
access, we could generate an alert. We added some regular expressions to prelude-lml to
take the log messages produced by SELinux and convert those into system alerts.

We have modified a version of PAM (the Pluggable Authentication Modules system used
for a variety of authentication tasks under Fedora Linux) to generate e.g. an alert on
presentation of a honeytoken during a login attempt. This sensor was not a particularly
realistic sensor for our system (typically a honeytoken login attempt does not need to be
correlated to be considered an attack), but helped to demonstrate the basic framework
during the first PI meeting in January 2005. Additionally, we trained the system so that
Snort would alert on seeing the honeytoken cross the network (e.g., in an email planting
the honeytoken), but the search engine would ignore the alert since it was not correlated
with a PAM alert. When a login attempt was made across the network (via some clear
channel such as telnet), the combined Snort and PAM alerts would cause a correlated
alert to be raised. As noted above, prelude-lml is used to monitor log files. For example,
later in the project, as we started to try to determine a responsible user to allow a
response, we wanted to learn who was logged into a machine. We used prelude-lml to
monitor the log files produced by PAM and generate alerts on login and logout events.

3.1.3 Command-line monitoring

To create a profile of normal user behavior, a basic assumption/observation was that a
typical user has a vocabulary of commands with which they are familiar and typically use
commands from that vocabulary. Moreover, they have typical sequences (such as gcc,
myprog, gdb, vi or cd, ls, cd, ls). Our examples are command line oriented in keeping
with our implementation. We believe that one could instrument the operating system and
possibly window system to generate a similar sequence of events on program launches to
get a similar effect. The underlying assumption was that an attacker is likely to have a
different command-vocabulary or command-sequences and may have to use some
unusual commands, for example, to perform privilege escalation. Command line activity
has previously been used to detect so called ‘masqueraders’, people using others’
computer accounts. However, most of the work has concentrated on evaluating large
blocks of commands, and / or ‘enriched’ command-lines, which need much training data.
In this project, in order to thwart insider attacks such as information ex-filtration, we need
an anomaly detector which can report unusual behavior in real-time, without delay.

In order to monitor ‘unusual commands’, we have adapted a n-gram based anomaly
detector, Stide [17]. Stide is a tool that was originally used to signal abnormal system call
sequences. At its core, though, it takes a series of lines each with two columns. The first
column is a stream identifier. Stide can process data from multiple streams and will
consider each stream independently for purposes of learning or evaluating sequences.
The second column is an integer representing one event in the sequence.

11

In order to implement the real-time command line monitoring system, we made some
minor modifications to bash, the ``standard'' shell available with Linux. Our modified
version of bash writes its process ID and the inode of the command run each time the
user ran a command. In the case of built-in commands, we had a map from the built-ins
to small integers. Mapping commands to integers this way had the advantage of being
very simple and very quick to implement.

Finally, we had a configuration file to determine for each user whether they should be in
training mode or in detection mode. In training mode, we merely collected the records
produced by bash for later use. When sufficient training had been collected, we ran
stide’s training mode to allow it to collect sequences. Those sequences were then used in
detection mode with our modified bash sending commands as they were typed to stide.
When an unusual sequence was seen, our version of stide had been modified to issue a
Prelude alert.

Combining samhain and stide gave us a good set of alerts to correlate during our first
demonstration at the July 2005 PI meeting. As noted, stide would sometimes produce
alerts because a user used an unusual command. samhain would sometimes produce
alerts when a user made a legitimate access to a file. However, when we asked some
people who were not on the project to try to find and gain access to some ``sensitive''
files, they tended to use unusual commands and access guarded parts of the system
allowing us to provide a correlated alert corresponding to the attack.

After the Red Team Exercise, late in the project, we have developed a sequential Naïve
Bayes detector as an alternative anomaly detection method. Naïve Bayes was the best
performing anomaly detector when evaluated on command-line blocks of 100 commands
in [16]. The innovation here is the use of a sequential test, in order to have real-time
detection. We have used the same modified bash version to collect command line
information, and only switched the detection module.

Furthermore, we have noticed that the Rutgers sketches can also be used to create small
space profiles for host-based user behavior, such as file access profiles. This is another
use of this technique to provide insider attack sensors.

3.2 Search Engine

The Search Engine’s function is to take the current network state (described as a
collection of sensor alerts) and find the most relevant similar historical network states
(also described as a collection of sensor alerts), which are annotated with attack
classification and response information, and do this in near-real time. The current
‘network state’ is given by the set of alerts which have arrived in the last sliding time
interval of x seconds (x=20 seconds, 60 seconds for example) The network state is
updated every few (=2) seconds in our implementation, but this frequency can be
somewhat increased without overloading the engine.

12

The first step in searching or anomaly detection is to translate the current alert set to a
vector. In this vector, each possible occurring alert by each sensor type is assigned a
coordinate. To populate the vector network state description, there are several options:
a) We add 1 to the vector coordinate corresponding to an alert for each time the alert

occurs in the network state description, starting with a vector of all zeroes.
b) We set the vector coordinate corresponding to an alert to 1 if the alert occurs in the

network state, and 0 otherwise.
Option a) is currently implemented in our prototype. Since there are many different
possible alerts, the resulting vector space is high-dimensional. However, in each network
state description or query, only a few of these alerts will be present, and therefore the
vectors are also sparse.

Note that by mapping the alert set to a vector, the ordering in the sequence of
generation/arrival of the alerts is lost. This is beneficial to search speed, and also makes
the network state description more robust against missing sensor alert information, or
delayed arrival of alerts. However, the order in which the alerts were generated carries
some information about the steps in the attack, which can help rank/classify the states.

Each network state vector gets ‘annotated’ with meta-information in the form of the
original set of alerts in the network state description, which retains the ordering of the
alerts and other information such as classification and actions taken in response, if
available.

The search algorithm to find ‘similar states’ works by first reducing the dimensionality of
the defined vector space, and then finding similar states as nearest neighbors to the given
‘query’ vector state mapped to the reduced-dimensional space. The similarity of the states
is evaluated according to a given distance metric.

After the search algorithm returns sufficiently similar states, according to a maximum
threshold on the allowable distance between states, the states are ranked according to a
ranking function.

3.2.1 Dimension reduction using SVD

Here, we describe a method for dimension reduction of the search vector space, based on
matrix decomposition, in particular Singular Value Decomposition (SVD). Matrix
decomposition methods have applications in unsupervised data mining. First, they make
use of the natural representation of the data as a matrix, where each row corresponds to
an object (or state) and each column corresponds to a feature (or alert). Second, they
presume little a priori information about the structure of the data, e.g. relationships
among alerts.

As mentioned before, SVD lies at the heart of Latent Semantic Indexing (LSI), a
successful algorithm for textual information retrieval. It has also been applied to image
segmentation problems, and clustering of large graphs. To apply SVD in our context, we
first construct a matrix as follows:

13

Suppose we construct an nm× matrix][ijaA = with the m possible sensor alerts as
rows, and n documented network states as columns. Here element ija denotes the

measured value corresponding to an alert by detector i in a particular documented

network state j . In case there was no alert for detector i in network state j , then ija = 0.
This is just the matrix of available network state vectors as constructed above.

Before computing matrix decompositions, it is important that data values have roughly
the same magnitude. If the matrix entries are positive, a popular transformation to
achieve this goal is via logarithmic transformation, or log-entropy weighting.

Let r be the rank of matrix A. The Singular Value Decomposition of A , denoted by
SVD(A), is now defined as:
 TVUA Σ= (1)

where U (size m by r) and V (size n by r) have orthogonal columns, VT denotes the matrix
transpose of V, and Σ = diag(σ1,…,σr) is a diagonal matrix of size r by r, where the
‘singular’ values σ1,…,σr are ordered in decreasing order. If we define, for k <= r:

∑
=

Σ=⋅⋅=
k

i

T
kkk

T
iiik VUuA

1
νσ

 (2)
That is, we only keep the first k columns of U, V and Σ to define Uk , Vk and Σk, then
(

F
denotes the Frobenius norm [5]).

 22

1
22

)(...min rkFkFkBrank AABA σσ ++=−=− +=
. (3)

Similarly,

2

1
2

2

2

2)(min += =−=− kkkBrank AABA σ ., (4)

where
2
 denotes the l2-norm). This means: kA is the ‘closest’ rank-k matrix to A ,

measured in the 2-norm and the Frobenius norm. In particular, this result shows why
using the SVD is a natural method for dimension reduction.

3.2.2 Search Algorithm

Our search algorithm now operates as follows:
• First, a set of ‘training states’ is translated to vector representation and used to

construct the matrix A above.
• Next, the partial Singular Value Decomposition of A is computed, and in particular,

Uk , Vk and Σk stored.

14

• The original training states are mapped to the reduced, k-dimensional subspace by
computing for each column y of the original matrix A, 1−Σ××= kky Uyv .

• New ‘alert set’ queries are first translated to vector representation q, and then mapped
to the k-dimensional ‘factor space’ in the same fashion: 1−Σ××= kkq Uqv .

• We perform ‘nearest neighbor’ search to find the states which are sufficiently close to
the query in the reduced dimensional state, according to our chosen distance metric.

• The Top-K of these are returned.

3.2.3 Distance metric

Two popular distance metrics often used in conjunction with nearest neighbor search are
Euclidean distance and cosine similarity (which is a semi-metric). Since using the SVD
for dimension reduction corresponds to an orthogonal projection onto a linear subspace in
Rd with Euclidean distance, the Euclidean distance metric is also a natural one to use for
measuring similarity in the reduced space.

An alternative metric, which is quick to compute, measures the cosine between two data
points interpreted as vectors from the origin. This is especially useful when the data have
been normalized, or the data matrix is sparse. This is for instance the case in term-
document matrices, where most words occur only in a few documents. It is the default
distance metric used in Latent Semantic Indexing for textual information retrieval. The
metric reflects the idea that the fact that a word occurred in a document is more
interesting than its frequency. Similarly in our application, it is often more interesting to
know that an alert occurred in a state description, than its frequency (redundant repeated
alerts are common). We have used cosine similarity by default.

Several implementation issues for an SVD based search engine, in particular of Latent
Semantic Indexing, are discussed in [4]. Here we discuss several aspects pertinent to
search for anomalies/attacks. To detect attacks which have never been seen before, we
have also developed an anomaly detection mode, also using SVD, but now SVD of the
alert-alert correlation or covariance matrix corresponding to the alert-data matrix.

3.2.4 Anomaly detection

We have developed a SVD-based anomaly detection system, which is a generalization of
the method described in Shyu, Chen, Sarinnapakorn, & Chang [15]. The method has a
training phase and a testing phase. In the training phase, we accept data that is supposed
to represent normal behavior, and we choose parameters to fit this data into a multivariate
normal distribution. In the testing phase, we accept data that may be anomalous,
compare it with the parameterized distribution, and either accept it as normal or reject it
as anomalous. We have several options as to how this is done.

The training data arrives as a sequence of m sequences of alerts. Each sequence of alerts
is converted into a vector in the same way we used for the LSI-based scenario search
method. That is, we built a vector in Rn indexed by alert names, whose entries are one of

15

several functions of the number of times that alert appears in the sequence. The resulting
sequence of vectors becomes the columns of a matrix M. We want to fit this as coming

from a multivariate normal distribution. We compute the mean Me
m
1

=θ of the vectors

where e is a vector of 1s. We compute the sample covariance matrix

()()′′−′−= eMeM
m

S θθ1 . We compute the eigenvalue decomposition

QQS 2Σ′= of S, where we have ordered the eigenvalues 22
2

2
1 nσσσ ≥≥≥ K . Note that if

x is multivariate normal with mean θ and covariance matrix S, then ()θ−Σ= − xQy 1 is a
multivariate normal with mean 0 and covariance matrix I, that is, the components of y are
independent standard normal random variables.

When data arrives for testing, we first convert it to a vector x as before. We can reject it
as anomalous immediately if it has alert names that were not seen in the training data.
We centralize it and standardize it by computing ()θ−Σ= − xQy 1 . Following an idea in
[1], we divide the range 1...n into two groups 1…k and k+1…n, and compute

∑ =
=

k

i ia y
1

22χ and ∑ +=
=

n

ki ib y
1

22χ . If x is from the chosen multivariate normal

distribution, 2
aχ and 2

bχ are from chi squared distributions with k and n-k degrees of
freedom respectively. We compare these values with the known percentage points of
these distributions and accept as normal or reject as anomalous accordingly.

While the Chi-squared distribution is inspired by an assumption of Gaussianity of the
underlying random variables, the alert data may be significantly non-Gaussian.
Therefore, instead of using the tabulated values of the chi squared distribution, we use the
empirical distributions of 2

aχ and 2
bχ as computed from the training data. Since we may

be computing these statistics for the training data, we also permit an option to prune out a
specified number of outliers from the training data with respect to these statistics. If we
prune, we have to re-compute the sample mean and covariance. Under the assumption
that attack data exhibits itself as outliers in the overall dataset, the pruning has the benefit
of ‘cleaning’ the training data, while not requiring labeled training data.

As a third option, we can use sample correlation instead of sample covariance. Let D be
the diagonal matrix with entries iiii sd 1= . The sample correlation matrix is C=DSD.

If QQC ˆˆˆ 2Σ′= , then we can compute ()θ−Σ= − xDQy ˆˆ 1 as a different standard
multivariate normal vector if x has mean θ and correlation matrix C. We then proceed
with the chi-squared computations as before.

The new anomaly detection mode can be combined in several ways with the SVD-based
search. In the July 2005 demonstration, we used only state search. In the Red Team
Exercise, we have used the anomaly detection mode in isolation, without state search. In
our final demonstration, on January 25, 2006, to the AFRL agent Kevin Kwiat, we used
anomaly detection, followed by state search if an anomaly had been detected.

16

3.2.5 Adding weights to alerts and/or state vectors

Instead of applying the SVD to the original ‘alert/state’ matrix, we can weight individual
alerts or states differently. One reason to do this is normalization, as discussed above.
Another reason is to make sure rare but important states get represented well in the
reduced space. As the weight of a state is increased, the first few singular vectors will
better represent the state. In terms of attack detection, adding weights to alerts and/or
state vectors can help distinguish rare but highly significant alerts from numerous but less
significant ones.

3.2.6 Speed-up: Sparse matrix methods

Computation of (dense) SVD is expensive. Since the alert/state matrix is designed to be
sparse by construction, Lanczos algorithms for sparse matrices [5] can make computation
of the first singular vectors much cheaper, but computation of the SVD is still time
consuming. On the other hand, the SVD only has to be computed off-line. We use the
package SVDPACKC by Michael Berry to calculate (part of) the SVD.

3.2.7 Linear Search

Exact nearest neighbor requires a linear search of the stored states. This is expensive
when the number of stored states gets very large. When there is not much variability in
the stored states, it may be sufficient to find an approximate nearest neighbor rather than
an exact nearest neighbor. It is possible to do fast approximate nearest neighbor search by
constructing an appropriate search tree. Exact nearest neighbor search can then be
supported by traveling sufficiently deep in the tree, whereas stopping at a higher level
results in approximate search of given quality. Several implementations of tree-based
search exist, for example variations on the R-tree [4]. Note that when we are satisfied
with obtaining approximate nearest neighbors, one is not restricted to do SVD. In
particular, a promising method for approximate nearest neighbor search that does not use
SVD, but rather ‘random projections’ for dimension reduction, is given in [8]. Random
projections are also at the heart of the ‘sketch’ based anomaly detector developed by
Rutgers University.

3.2.8 Ranking and Precursor functions

3.2.8.1 Ranking functions
After the Search Algorithm returns a set of similar states as measured by the similarity
metric, we need to rank/serve the documents in an ordered top-K list. The ranking can be
done in several ways.

a. Search Similarity metric. The simplest way to rank search results is to use the
similarity metric of the Search Algorithm: the state with the highest similarity
score is the first, etc. However, the state most similar in this metric is not
necessarily the state a network administrator is most interested in from an
intrusion detection point of view.

17

b. Severity/Confidence classification. Here the states are ranked by there ‘severity’
in the past. Since typically the reaction to the previous ‘bad state’ took care of the
problem, e.g. after a vulnerability has been patched, the old severity classification
may not correspond to the current impact. In our current implementation,
initially, the Top K states are found most similar to the current state in terms of
the Search Similarity Metric. Among those, the highest-ranking ‘Attack’ state is
found, not exceeding a distance threshold from the current alert set. This is send
to the response engine.

3.2.8.2 Precursor functions
Besides detecting attack states, we want to pre-empt attacks by detecting precursors to
these states. To do this we proceed as follows. When a state is labeled as an attack state,
we can annotate preceding network states as possible precursors to the detected attack.
Each related network state document, which was collected in the attack time-span
immediately before the attack was detected, is annotated as ‘Precursor’ to the detected
‘Attack type’. To facilitate this forensic analysis, we may define a precursor function that
models the attacks’ setup phase and time-span. The time-span can vary from tens of
seconds for a flash attack, to perhaps several days for a stealthy insider attack. Initially,
we rely on humans-in-the-loop to accurately label attack precursors/early stages.

Often incidents span more than one state vector, e.g. in case of stealthy, multistage
attacks. A way to model the entire incident is by grouping the states corresponding to
attack stages into alert groups. In fact, given our state space, these are groups of groups of
alerts. Suppose we find an historical state to be similar to the current state, Then, the alert
group which the historical state is part of gives an indication of what to look for next.
Precursors and next attack stages can be inferred from the preceding and following states
in the alert group of the similar historical state. Precursor definition can be facilitated by
posing an appropriate SQL query to our IDMEF schema based relational database
containing the alerts.

Figure 4 describes the typical event flow when the search engine detects attack
precursors.

18

Figure 4: Typical sequence of events in precursor detection

3.2.9 Search Refinement

The design of the Search Engine facilitates Search Refinement in the following ways:

a. Since the sensor alerts are stored as IDMEF messages in a relational database, one
method of refinement is to confine the search-result set to a subset containing
specific attributes (e.g. Target, Source, Classification)

b. Following a), it is beneficial to confine the search for similar alert patterns to a
subset of the current ‘query’ alert set, e.g. to separate different concurrent attacks.

In particular, in our current implementation, we have the option of segmenting the alert
set by reported ‘Target’ host, and creating a new search query for the alerts
corresponding to each source, in addition to the original query. This in particular helps
detect simultaneous attacks on different targets in our vector space model. Furthermore,
since the alerts are stored in a relational database, we can in fact create queries
corresponding to alerts returned from any SQL query. This will also be helpful in
creating precursors, e.g. by forming time-based queries (e.g. “Give me all the alerts
corresponding to this target in the last minute/hour/day”).

The output of the search engine is a list of the top-K most similar network states, together
with their “similarity score.”, re-arranged by attack state. If the similarity of our query to
a known attack is strong enough, our confidence in the detected attack is high and we will
pass the detected attack-type on to the Response Engine. If our confidence in the
response is not high enough, we can pose a refined query based on that response to
increase our confidence. After possible refinement, the Top-k responses are passed to the
Response Engine.

19

When an anomaly is classified (e.g. “normal”, “insider attack”, etc), and its successful
response verified, it can be added to the list of known network states, and stored for
future reference in the Network State Repository. If the network has encountered attacks
that have been annotated correctly, new attacks that are similar but not necessarily
identical are now possible to detect and store using our technique. This enables the
system to learn variations of attacks and improve its performance over time.

3.3 Response Engine
In large systems, merely detecting attacks is not enough to protect critical services and
the legitimate users. Manually generated response will be neither timely nor scalable.
The Response Engine component in our system performs the following functions: (1) it
performs an impact analysis of a potential attack on critical services, (2) it synthesizes a
reconfiguration of network devices such as routers, switches, and firewalls, and end-host
devices that minimizes “collateral damage” to other services, and (3) pushes the changes
to these devices. For this work, we have leveraged the logical engine built in the Smart
Firewalls project under the Dynamic Coalitions program [9].

The implementation of the SRS Response Engine sub system consists of Smart Firewall
Engine, Message Center, Management GUI, Host Adaptor and Juniper Router Adaptor
software modules. Each of these software modules is briefly described below:

3.3.1 Smart Firewalls Engine

The Smart Firewalls Engine (SFW) software allows a system administrator to automate
or manually configure/manage security policies as follows: the systems administrator or
operator supplies the SFW system with an initial description of the network as well as the
network-wide security policy. Access policies for a network are specified in terms of
“tags,” which are logical or role based groupings (accounting, manufacturing, guests,
etc.). In turn, the SFW system generates firewall rules which guarantee that the network
will be policy-compliant, or else reports why the policies cannot all be simultaneously
upheld. In on-line mode or automatic mode, the SFW system periodically reads network
state, validates policy and generates new configurations, where needed, to uphold policy.

3.3.2 Message Center

In the architecture, the Message Center internally dispatches XML messages. It connects
the many adaptors to the single Smart Firewalls Engine. In addition to connecting the
SFW components, it also connects the other information assurance components of the
design, including the Intrusion Detection Subsystem and the Management GUI. This
message dispatching role facilitates system-wide policy coordination. The INFOCON
level set by the Management GUI determines the set of policies to be loaded. As
discussed under Management GUI, the INFOCON level affects the impact of a policy
violation, and can thus be used for impact analysis.

20

3.3.3 Host Adaptor

The Host Adaptor implements discovery and enforcement operations at Linux hosts and
routers. The Host Adaptor discovers information about the configuration and service at
network elements. It discovers this information locally through a variety of operations
performed on the local operating system and communicates the discovered information
through its upward interface in the form of XML messages that have fields to identify the
host adaptor sending the message; the permanent name of the network element; the
current IP address, network mask, MAC address, and ad hoc domain membership of each
interface of the network element; the services running on the network element; any
routing information in the network element; and the current security enforcement
measures (e.g., packet filtering rules) implemented in the network element.

21

3.3.4 Juniper Router Adaptor

Figure 5: Juniper Adaptor communication flow

As shown in the figure above, the Juniper adaptor is a module that communicates with
both the Smart Firewalls module (through the “Message Center”) and the Juniper router.
Its purpose is twofold. It gives information about the Juniper router including
connectivity information to the Smart Firewall and it configures the Juniper router based
on messages from the smart firewall module. The communication between modules is
through XML messages.

3.3.5 Management GUI

The Management GUI accepts manual input that indicates a change in the INFOCON
level, a manual override of the intrusion detection status of a network element, or a
manual override of the key-revocation request status of a network element. This
information is sent to the Message Center for further dissemination. The INFOCON level
can be used to affect a manner of impact analysis: stricter policies if the risk of insider
attack is high, possibly weaker policies in lower risk situations.

Once the Response Engine System is up and running, it operates as follows: The Message
Center receives IDMEF messages from an intrusion detection system (the Search Engine
in our prototype). The Message Center detects the source of the attack from reading the
IDMEF message. If the Classification field is 'Suspicious', then it will label the source
host as Suspicious. If the Classification field is 'Bad', it will then label the source host as
bad. The Smart Firewalls engine will receive this list of suspicious and/or bad hosts and
check its policies for consistency. If there is a need for firewall rule changes due to this
list, it will generate the appropriate filter rules and submit them back to the Message
Center. The Message Center propagates these rules to the affected hosts and routers.

3.4 MAPIT: Modeler and Auditor Program for Insider Threat

The SUNY Buffalo Team has developed MAPIT for this project. MAPIT is a program
for modeling and analyzing insider threat. It is developed based on the Key Challenge
Graph Model. For more information on this model, see [20]. A user of the program,
normally an administrator of an organization/company network, first uses the tools to
construct an initial physical topology of the network with information about accounts and

Smart
Firewalls

Message
Center

Juniper
Adapter

Juniper
Router

Smart
Firewalls

Message
Center

Juniper
Adapter

Juniper
Router

22

current node/services configuration. From this physical network, MAPIT will
automatically generate the corresponding logical graph called Key Challenge Graph
(KCG) with more specific costs for the edges. The user may also want to perform further
refinement or add new elements to the logical network for full analysis, in accordance
with the KCG model.

Finally, after the construction of the logical network is complete, users can use MAPIT to
find an approximate attack scenario from a source node to a target node. The source node
can be an account, a server or any other element in the network. Similarly, the target can
be a resource, a valuable asset, a server or any other element of the network. The attack
scenario will be represented as a sequence of visited nodes (a walk), starting from the
source and end at the target node. In most cases, part, but not all, of this sequence is
shown in the logical network due to visualization limitation. The whole sequence will be
saved in a separate file for full reference.

MAPIT’s architecture consists of three main components as shown in Figure 6
• A Graphical User Interface (GUI)
• Graph Model and Analyzer
• Output Adapter

Figure 6: An Overview of MAPIT’s Architecture

Modeling Interface
At the network topology level, the amount of information available to a system
administrator or a security analyst is often very detailed and can be overwhelming.

23

Moreover, only a small fraction of all this information is actually useful for the purposes
of threat analysis from the insider point of view. MAPIT provides a graphical user
interface to assist the security analyst in filtering the irrelevant information and
representing only the necessary details.

The first level of input to MAPIT is the network topology. Within this topology, the
various nodes and access control mechanisms are identified. The main idea is to realize a
legitimate user’s view of the network and produce an instance of the key challenge graph,
a theoretical machinery which we have recently developed to represent only the relevant
aspects of the network state. This model combined with attack scenarios provides the
input to the threat analysis stage (Graph Model Analyzer).

Graph Model Analyzer
The primary purpose of the graph model analyzer is to perform threat analysis for a given
attack scenario. From an algorithmic complexity point of view, it turns out that the
general problem of threat analysis is not only NP-complete but also difficult to
approximate. Nevertheless, we have developed two algorithms to perform threat analysis,
one which produces optimal solutions but runs in exponential time, and the other, a
heuristic, which runs in polynomial time but generates only approximate solutions. The
security analyst can choose the appropriate algorithm and perform threat analysis.

Output Adapters
The impact of the output from the threat analyzer is manifold. First, the most immediate
result is a ranked list of attack sequences, which an insider is most likely to attempt with
high chances of success. This list can direct a security analyst to locations where proper
security mechanisms can either be deployed or existing policies revised. Another
possibility is that the output can be in the form of an IDMEF-like incident report, which
can be used to update the intrusion detection mechanisms. A third possibility is that these
potential attack scenarios can be combined with network simulators like ns2 and EMIST
to generate pseudo traffic which would appear if a real attack was occurring. This wealth
of data can be used in conjunction with the above forms of results to train the search
engine based detection system.

24

4 Results and discussion

We have tested our system in small scale, realistic tests in July 2005 and in the Red Team
Exercise in November 2005. Each of the tests focused mainly on a few aspects of our
system.

Both demonstrations were carried out on our testbed. In July 2005, four Telcordia
Applied Research employees not connected to our project were recruited to conduct
information exfiltration attacks on the testbed. Two had worked on computer security
projects before, and two were system administrators. Specific files with names and
content describing sensitive military operational information were distributed over the
testbed machines. The ‘insiders’ were provided a legitimate account on the testbed
network, and general information about the target to be attacked, namely, sensitive
military information. During this exercise, we deployed the samhain file integrity
checker, the stide n-gram anomaly detector for unix commands, and snort. Our search-
based detection system was able to detect 3 out of 4 attacks with little delay (on the order
of seconds), while we also gained experience with the real-time operation of the system.
No automatic response had been implemented yet. A video of the demonstration was
presented on July 12, 2005 at the PI-meeting.

Shown in Figure 1 are the three ‘exemplar’ states present in our search engine network
state repository:

1) a set of alerts occurring during normal operation ‘Normal’, displayed as blue
diamonds.

2) a pattern corresponding to unauthorized reading of information, ‘Snooping
attack’, displayed as pink squares,

3) a pattern corresponding to unauthorized reading and writing of information,
‘Changing attack’, displayed as yellow triangles.

The search engine compares the set of alerts in the last x (x=20 here) seconds to the three
examplar states. The distance to each of these states is shown on the vertical axis. Thus,
the most similar state appears lowest in the graph, closest to the horizontal axis. Here we
see an insider attack by the first employee, Alice. Note that the attack takes place
between 14:48 and 14:49 (GMT). Further graphs of the search results are shown in the
Appendix.

In total, 3 out of 4 attackers attempted an information exfiltration attack, the fourth one
didn’t succeed in locating the sensitive information. Two out of these 3 attackers
attempted an attack as a normal user; the third one used an escalation to a privileged
account.

25

Figure 7: Distance of each of 3 exemplar states to pattern of alerts in current time-
window (last 20 seconds).

This result showed the promise of our system for correlating multiple alerts and detecting
insider attacks.

After the July demonstration, we spent time integrating the Response Engine into our
system. This required a new sensor to relate file accesses to users. We settled on a
prototype solution re-tooling SE-Linux policy violation log messages for this purpose.

During this Red Team Exercise, we used the first fully integrated prototype of our
system, including a sensor network with a new SE-Linux based sensor to relate file
accesses to users, a search engine with an anomaly detection mode, and a policy based
response engine able to deny network access to detected inside attackers trying to extract
sensitive information from target files. Other primary sensors included an n-gram based
anomaly detector to detect anomalous command sequences.

The Red Team was provided with an account on our test-bed, and partial knowledge
about files with sensitive information. In total there were 10 such files, which formed the
10 malicious goals in the exercise. The information given consisted of the target host,
directory tree and (unique) keyword in the target file. A Red Team victory consisted of
successfully reading or modifying a target file, and a Blue Team victory consisted of a
successful block of network access to the test-bed host from which the Red Team was
conducting its attacks. In total 4 out of 9 attacks were successfully blocked, which
exceeded the program metric: thwart or delay 10% of insider attacks. The successfully

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

2.00E+00

7/ 8/ 2005
14:45

7/ 8/ 2005
14:47

7/ 8/ 2005
14:48

7/ 8/ 2005
14:49

7/ 8/ 2005
14:51

7/ 8/ 2005
14:52

7/ 8/ 2005
14:54

7/ 8/ 2005
14:55

7/ 8/ 2005
14:57

7/ 8/ 2005
14:58

7/ 8/ 2005
15:00

Ti me

 normal

 snooping at t ack

 changing at t ack

26

thwarted attacks were multiple command line attacks, entered manually by the Red
Team. Originally, the system was designed to thwart slower, multistage attacks within 1-
2 minutes, so this was a notable success.

Attacks we did not catch included scripted, single line multiple-command attacks, which
were too fast for the current implementation of the system to catch. Several other
successful attacks were able to circumvent the sensor network. Non-malicious goals
consisted of ‘normal’ command line behavior not directed at designated target files. The
red team was able to trigger a misconfigured sensor repeatedly, resulting in false alarms
for all attempts.

Overall the Red Team Exercise was a valuable experience, and we took away several
important lessons from it, especially improving the sensor network and the interaction
between Search and Response Engine. A Red Team Exercise Report and Rules of
Engagement are included as annex to this final report.

One of the findings in the White Team final report on the exercise, was that the attacks
did not fully test the technology. This is true, as the attacks were mostly focused on
circumventing the sensor network. The Search Engine correlation mechanism was not
extensively tested.

Earlier on in the project, in April 2005, we had discussions with MITRE to make use of
the extensive insider data they have collected on their network. Since this data is stored in
a relational database, it would be relatively easy to adapt our Search Engine technology
to operate on this data. Unfortunately, we were not able to get access to this valuable
data.

As an indication of how our Search Engine operates on a large dataset, and also how it
performs in detecting slight variations of known attacks, we tested the Search Engine in
April 2005 on the MIT Lincoln Labs IDS 2000 Scenario Specific Datasets. The results
were presented during the SRS Site Visit in April 2005. Notably, the Search Engine was
able to detect a new attack scenario which was a slight variation of a known, stored attack
scenario.

Since the quality of input of the sensor sources has a significant impact on the quality of
the correlated detection, here is a summary of experiences with our chosen set of sensors
in particular:

Command-line monitoring

One significant difficulty with such a command-monitoring approach is that there will be
times when a user mistypes a command name and gets another command or is asked by a
system administrator to type a series of commands as part of diagnosis or merely alters
his sequence of commands because of unexpected output. This will cause alerts that are
false positives for attacks. For this reason, correlating these alerts with other events in
the system in critical.

27

Our implementation based on monitoring inodes had the advantage of being immune to
command aliases. However, it had several disadvantages. Although never a problem, it
was possible that one of the small integers we chose could have coincidentally been the
inode number for a common command. In that case, they would have appeared to be the
same command to stide. Aliasing cd and su in this way would hide attacks. Another type
of aliasing was guaranteed to occur. Since Unix (and C) provide that the first argument
to a program will be the name under which the program was run, it is possible for a
program to behave differently based on its name. Thus, for example, on a typical Fedora
installation, /bin/gunzip, /bin/gzip, and /bin/zcat are all hard links to the same file. Based
on the name, the program uncompresses, compresses, or uncompresses the file and sends
the result to standard output. Also, inodes are not consistent across systems. Most of the
machines in our testbed were initially created from a common disk image so many of the
typical commands happened to have the same inode number. Even in this case, packages
we installed later, such as Java lead to commands with different inode numbers. We
eventually wrote a script to allow training histories to be moved between machines.
Additionally, inode numbers are only unique within a file system. While it is far more
typical for systems to be installed with the vast majority of files in a single file system, if,
for example / and /usr were different file systems, it would be possible for a command in
/bin and another in /usr/bin to have the same inode numbers. If we were to build a
production version of this sensor, we would use a different mapping.

The biggest difficulty with command-line monitoring using stide was generating
sufficient training data and knowing when we had done so. More extensive testing would
be needed to understand the practically of this approach in general. It also has the
shortcoming, compared with system call tracing, that sharing data across users is less
effective, so each user must train the system. Its advantage compared with system call
traces is that an insider who finds a description of an attack that uses system
administration tools will have no or very few unusual system call sequences even though
he is using commands that he typically would never use.

File Access Monitoring

We eventually found that samhain did not meet our needs for responsiveness. Since
samhain has to balance the system impact of frequent checks on the monitored files with
the latency before an attack is reported, we found that fast attacks without precursors
would complete successfully before an alert would be generated. Furthermore, for
purposes of generating an automatic response to a detected attack, it does not provide
information about the perpetrator (e.g. on file-access). Although this information can be
inferred by correlating file-access with additional sources, this again is not suitable for
immediate response to direct attacks without precursors.

The shortcomings of using SELinux are largely tied to its prototype nature. This is a very
heavyweight tool for what is required. SELinux is based on Linux Security Modules or
LSM. In essence, LSM is a set of hooks in the Linux kernel that allow security modules
that have been loaded into the kernel to make allow or disallow decisions on various

28

security critical accesses. A more targeted version of what we did would be built by
using an LSM compatible module that only performed the alerting functions we
required without the mechanisms for enforcement and checking accesses that we do not
use. This would also correct the second major difficulty we encountered: in permissive
mode, SELinux keeps track of what alerts have already been issued and suppresses
additional alerts of the same type. While this is useful for keeping log files from
overflowing when testing a new policy, it meant that in our testing, we had to reset
SELinux after each alert in order to get it to issue another alert.

All-in-all, the choice of sensors for our system turned out to be even more critical than
we expected. Using stide for command sequencing, SELinux, and PAM in combination
allowed us to perform a proof of concept for correlation based on a search engine.
However, as with any processing system, the quality of the input affects the quality of
the output. Further study of the sensors and combinations of sensors would be welcome.

Publications and Patent

Publications under this contract include:

1.Ramkumar Chinchani, Eric van den Berg, "A Fast Static Analysis Approach to Detect
Exploit Code inside Network Flows", Eighth International Symposium on Recent
Advances in Intrusion Detection, Seattle, WA, September 7-9, 2005

This paper describes a new method to detect exploit code (e.g. worms) in network flows
relying on lightweight static analysis of exploit code rather than worm propagation
mechanisms.

The next 3 publications describe the Key-Challenge-Graph model underlying the Insider
Analyzer and Modeler tool, called MAPIT, developed by SUNY Buffalo.

2.Ramkumar Chinchani, Duc T. Ha, Anusha R. Iyer, Hung Q. Ngo, and Shambhu J
Upadhyaya, On the Hardness of Approximating the MIN-HACK Problem, Journal of
Combinatorial Optimization, vol.9 (2005), no. 3, pp 295--311.
3.Ramkumar Chinchani, Anusha R. Iyer, Hung Q. Ngo, and Shambhu J Upadhyaya,
Towards A Theory Of Insider Threat Assessment, in Proceedings the 2005 International
Conference on Dependable Systems and Networks (DSN 2005), June 28 - July 01, 2005,
Yokohama, Japan.
4.Ramkumar Chinchani, Duc T. Ha, Anusha R. Iyer, Hung Q. Ngo, and Shambhu J
Upadhyaya, Insider threat assessment: model, analysis, and tool, in Network Security, S.
Huang, D. MacCallum, D.-Z. Du (editors), Springer, 2005, to appear.

Finally:

5. Giovanni Di Crescenzo, Richard Lipton, and Shabsi Walfish, “Perfectly Secure
Password Protocols in the Bounded Retrieval Model”, to appear in TCC 2006, March 4-
7, 2006.

29

This paper studies the problem of constructing efficient password protocols that remain
secure against offline dictionary attacks even when a large (but bounded) part of the
storage of the server responsible for password verification is retrieved, e.g. by an insider,
through a remote or local connection.

We also filed a patent application, based on publication 1 above: “Detecting Malicious
Executable Code Inside Network Flows”, filed on October 26, 2005.

We have benefited from fruitful discussions with Program Manager Lee Badger, e.g.
during the SRS Site Visit on April 22, 2005, which led to the successful initial
demonstration of our system in July 2005. We have also benefited from our discussions
with AFRL Agent Kevin Kwiat on the insider threat, during visits to Buffalo in
November 2004, and to Telcordia in March 2005 and January 2006.

30

5 Conclusions
Insider attacks are significantly harder to defend against than outsider attacks. Part of the
problem is that the insider has authorized access to the system, and often knowledge of
target resources. Consequently, fusion or correlation of possibly hundreds of different
alerts is required. This correlation is accomplished using high-dimensional search and
anomaly detection. Underlying assumptions are that the insider will trigger at least some
sensors prior to and during his attack. This assumption best fits an insider with up to
moderate knowledge about his malicious goal. The system is quite effective in detecting
attacks committed by such insiders, as was shown in a demonstration at the July 2005 PI
meeting.

In testing the system, we have mainly focused on information ex-filtration attacks. In
such attacks, we gave the ‘insiders’ information about the nature of the malicious target, a
file with sensitive (military) information, and approximate location information. With this
kind of information, we detected 3 out of 4 insider attacks on our test-bed in the July
demonstration, while the 4th insider did not get near a malicious goal.
We have integrated a response engine in our system to generate an automatic response to
detected attacks. While originally envisioned to thwart attacks in a time span of minutes,
the detection/response cycle is in fact fast enough to generate an automatic response in
seconds, as was shown in the red team exercise on Nov. 4.

We also were able to take some of the lessons learned from this exercise and improve
sensors, as well as improve interaction between detection and response engine.
SUNY Buffalo has developed a graphical insider attack modeling and analysis tool,
called MAPIT. This tool has been used e.g. to heuristically find the most likely attack
paths an insider can take to reach his/her malicious goal(s). It has been tested on the
Telcordia testbed, as well as on (part of) the Hackfest 2004 network.

A further innovation of note accomplished in this project is a novel sketch-based anomaly
detection sensor developed by Rutgers University, which can be used for detecting
anomalies in ip source / destination addresses, as well for defining small-space user
profiles for e.g. file accesses.

31

6 References

1. M. Randazzo et al., US Secret Service and CERT Coordination Center, “Insider

Threat Study: Illicit Cyber Activity in the Banking Sector”, August 2004, available at
http://www.cert.org/archive/pdf/bankfin040820.pdf

2. Lance Spitzner, “Honeypots: Catching the Insider Threat”, Proceedings of the 19th
Annual Computer Security Applications Conference, Las Vegas, NV, 2003.

3. Intrusion Detection Message Exchange Format: http://www.ietf.org/internet-
drafts/draft-ietf-idwg-idmef-xml-15.txt

4. C. Chen et al., Telcordia LSI Engine: Implementation and Scalability Issues, Proc.
RIDE 2001, Heidelberg, Germany.

5. G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University
Press, Third Edition, 1996.

6. P. Drineas et al., “Clustering of large graphs via Singular Value Decomposition.”,
IEEE Journal of Machine Learning 56, pp. 9-33, 2004.

7. S. Dumais, E. Cutrell and H. Chen, “Optimizing Search by showing Results in
Context, Proc. SIGCHI 2001, Seattle, WA, 2001.

8. E. Kushilevitz, R. Ostrovsky and Y. Rabani; Efficient Search for Approximate
Nearest Neighbor in High Dimensional Spaces; in Proceedings of The 30's ACM
Symposium on Theory of Computing (STOC-98)

9. J. Burns et al. Automatic Security Policy Management in Dynamic Networks.
DISCEX II. Anaheim, California. 2001.

10. Robert H. Anderson et al.,“Research on Mitigating the Insider Threat to Information
Systems - #2”, Proceedings of a workshop held October 2000, Rand Conference
Proceedings Publication Series.
http://www.rand.org/pubs/conf_proceedings/CF163/index.html

11. M. Keeney et al., US Secret Service and CERT Coordination Center, “Insider Threat
Study: Computer System Sabotage in Critical Infrastructure Sectors”,
http://www.cert.org/insider_threat/insidercross.html

12. US Secret Service/ CERT Coordination Center: “2004 E-Crime Watch Study:
Summary of findings”.
http://www.cert.org/archive/pdf/2004eCrimeWatchSummary.pdf

13. DoD Insider Threat Mitigation: Final report of the Insider Threat Integrated Process
Team, April 24, 2000. http://www.defenselink.mil/nii/org/sio/iptreport4_26dbl.doc

14. R. Richardson, Eight Annual CSI/FBI Computer Crime and Security Survey,
Computer Security Institute, 2003.

15. M-L Shyu, S-C Chen, K. Sarinnapakorn, L.W. Chang, “A Novel Anomaly Detection
Scheme Based on Principal Component Classifier”, ICDM’03.

16. K. Wang and S. Stolfo, “One-Class Training for Masquerade Detection”,3rd IEEE
Data Mining Workshop on Data Mining for Computer Security, 2003.

17. S. Forrest, S. Hofmeyr and A. Somayaji, “Intrusion detection using sequences of
system calls”, Journal of Computer Security 6(3), 1998.

18. M. Datar and S. Muthukrishnan, “Estimating rarity and similarity over data stream
windows”, In ESA, 2002.

32

19. S. Muthukrishnan, “Data streams: Algorithms and applications.” In SODA, 2003.
20. Ramkumar Chinchani, Anusha R. Iyer, Hung Q. Ngo, and Shambhu J Upadhyaya,

“Towards A Theory Of Insider Threat Assessment”, in DSN 2005), Yokohama,
Japan.

33

7 Appendix: Red Team Exercise Report

7.1 Introduction

The Red Team Exercise was conducted on November 4, 2005 at Telcordia Technologies
in Piscataway, NJ. The purpose was to evaluate the Mitigating the Insider Threat Using
High Dimensional Search and Modeling technology developed by the Blue Team from
Telcordia. The Red Team performing this evaluation was from Cigital.

The factual information in this report is taken from the final report that the White Team
prepared for this exercise. The current report further analyzes the results of the exercise
from the Blue Team perspective, and reports on some subsequent tests after the Exercise
relevant to its conclusions.

The exercise started at 07:30 on November 4, 2005 and concluded at 14:30 on the same
day.

On November 3, the Red Team and Blue Team met at Telcordia to discuss the exercise
and during this meeting, the Blue Team’s technology was ‘trained’ by the Red Team.
Training the Blue Team’s technology required the Red Team to interact with the system
and execute commands that a regular user would execute on the system. This process
helped to establish what normal and accepted behavior is on the system. At 08:15 on
November 4, at the beginning of the exercise, the system was further trained because it
was determined that certain normal actions were not trained the previous day (i.e. a valid
user accessing a sensitive file).

Throughout the day, several tests had to be re-run several times due to inconsistent
behavior of the Blue Team’s system. For instance, certain actions that were trained were
still logged as anomalous and the response system that disconnected a user once an
anomalous activity was detected had to be shut off because it prevented the Red Team
from performing their tests. The teams decided to agree that if an alert was logged on the
Search Engine GUI, then they would assume that the response system was able to
disconnect a user.

In the end, nine (9) attacks were tested and the Blue Team was able to correctly thwart 4
of the attacks. This gave the Blue Team a 44% success percentage, exceeding the
requirement of the program metric. However, four (4) non-malicious tests were
conducted and the Blue Team’s system identified all of them as anomalous activity. This
meant that the rate of false positives was 100%. While much of this can be attributed to
the limited training that was performed, it does raise an important question on the
difficulties of distinguishing between normal and abnormal user activities.

34

In their final report, the White Team noted that “one of the capabilities that were not
demonstrated by the Blue Team’s technology during the exercise was the use of historical
data to improve the detection mechanism. It would have been interesting to see how this
would have performed in detecting attacks and improving the rate of false positives.”

Subsequent tests by the Blue Team have focused on investigating this issue. It turns out
that the search engine can mitigate the effect of misfiring sensors to some extent. The
false alarm percentage was decreased to 50% based on defining network states consisting
of false alarm alerts, and labeling the states ‘False Alarm’ once, upon first occurrence of
the false alarm alerts. We ran the Search Engine again on the alert data collected at the
Red Team Exercise in anomaly detection mode. When a subsequent anomalous set of
alerts was detected, it was compared to the know network states labeled ‘False Alarm’
and if there was sufficient similarity, the anomalous behavior alert was suppressed.

This technique may in theory result in additional false negatives, i.e. missed attacks.
However, we did not notice that effect in our experiments. In contrast, two additional
attacks were signaled, that were missed during the Red Team Exercise. This was in part
due to inappropriate alert suppression during the Red Team Exercise.

7.2 Methods, Assumptions and Procedures

The methods, assumptions and procedures used are documented in the Rules of
Engagement and Red Team Tests listed in the Appendix. In short, the Red Team was
provided with a list of target files (Malicious Goals) and their directory trees. This last
information was provided to speed up the exercise. Success criteria were for the Red
Team to read or modify a target file before the Blue Team could disconnect the Red
Team laptop from the network.

As Non-Malicious Goals, the Red Team tried to trigger an alarm without accessing a
Malicious Goal Target.

7.3 Results and Discussion

During and after the Red Team Exercise, several observations have been made about the
Strengths, Limitations and Potential Improvements of the Blue Team technology, and
other Lessons Learned from the Exercise. Here is a list of the main conclusions: (from
White Team Report, draft 12-29-2005), together with our analysis of the results.

7.3.1 Strengths of Blue Team technology:

7.3.1.1 Response mechanism effective on some attacks
Even though the system was originally designed to thwart or delay on the timescale of
minutes, the current prototype was already able to thwart on the timescale of multiple
seconds. The response mechanism, having been developed/integrated before the Exercise,

35

still contained a few bugs, which considerably delayed the exercise. This issue has since
been corrected, and now the response engine operates without problem.

7.3.1.2 Single commands detected
In fact, also multi-command scripted attacks were detected, however the response was
too slow to thwart these. In general, when immediate response is required, a preliminary
response may help. This preliminary response can take for instance the form of delaying
command execution until confirmation of non-malicious nature is received from the
Search Engine or Response Engine (the correlation mechanism). This confirmation may
not always be possible, though.

7.3.2 Limitations of Blue Team technology:

7.3.2.1 System training difficult.
This turned out to be one of the difficulties with the system in general.

7.3.2.2 Sensitivity to timing attacks
There is a considerable delay between when an attack occurs and when the system detects
the attack. This is evident with tests 1.1 and 1.2. When single commands are executed,
the system has enough time to detect the attack and take appropriate action. When
commands or chained, such as the ‘cat’ and ‘find’ command, the system cannot respond
until the sensitive data has already been compromised. However, it should be noted that
this test was already beyond the original design goals for the Blue Team system, which
aimed at responding to attacks within minutes.

7.3.2.3 High rate of false positives
During the test, we observed a high rate of false alarms, mostly due to limited training
and sensor mis-configuration. A) defining appropriate network states for the search
engine, to be discussed below under Potential Improvements, and b) developing a new
sensor for user commands, have addressed this issue partially.

It should also be noted that the Red Team sometimes tried to trigger a sensor until they
succeeded. This methodology was bound to eventually raise a false alarm due to the
noted lack of training data. Furthermore, sometimes a false alarm might be interpreted as
an attack precursor. For example, the Red Team attacker accessed a directory with
sensitive files, without actually accessing the target sensitive file.

7.3.2.4 Weak detection of Root Activity
In fact, root activity was not reliably detected during the Red Teaming Exercise.
Upon further analysis, this turned out to be because of a combination of factors: during
the exercise, the SE-Linux file access sensor would only detect a access to a particular
file once, suppressing any further alerts. Also, the Search Engine automatically
suppressed alerts with our Search Engine host (put on a white list) as Source. This
apparently often occurred when a attack as root was detected. This issue has since been
resolved, although it points out the general problem with drastic automatic response to
attacks perpetrated as root.

36

7.3.3 Potential Improvements:

7.3.3.1 Reduce false positives
As pointed out above, false positives can be reduced by training the system more
extensively. Since the exercise, we have developed a new sensor for command line data,
based on a sequential implementation of a Naïve Bayes classifier. Furthermore, as
pointed out in the introduction, it is possible to reduce the false alarm rate by defining
appropriate network states for the Search Engine. The false alarm percentage was
decreased to 50% based on defining network states consisting of false alarm alerts, and
labeling the states ‘False Alarm’ once, upon first occurrence of the false alarm alerts. We
ran the Search Engine again on the alert data collected at the Red Team Exercise in
anomaly detection mode. When a subsequent anomalous set of alerts was detected, it was
compared to the know network states labeled ‘False Alarm’ and if there was sufficient
similarity, the anomalous behavior alert was suppressed. This technique may in theory
result in additional false negatives, i.e. missed attacks. However, we did not notice that
effect in our experiments. In contrast, two additional attacks were signaled, that were
missed during the Red Team Exercise. This was in part due to inappropriate alert
suppression during the Red Team Exercise.

7.3.3.2 Improve system training
The White Team observed that limited training was performed before the exercise.
Instead of only training for the actions of the Red Team, the system should be trained for
a larger environment before an exercise. This would hopefully eliminate many of issues
encountered during the testing. We agree.

7.3.3.3 Address SE Linux suppression issue
Resetting SE Linux periodically (e.g. every 5 or 10 seconds) easily corrected the fact that
SE-Linux only reported file access to target files once, and suppressed subsequent alerts.

7.3.4 Lessons Learned from Exercise:

7.3.4.1 Some problems should have been resolved beforehand
This would have been desirable.

7.3.4.2 Tests did not truly test technology
Indeed, the Red Team Exercise mostly centered on attempts to circumvent or trick the
sensor network, and did not test the Search Engine technology in particular. A subsequent
Red Team Exercise might have been focused on this technology instead.

37

7.3.5 Results State Definition Test on Malicious Goals

7.3.6 Results State Definition Test on Non-malicious Goals

Non-malicious Goal
Reference

Red Team Exercise Score Test Result Classification

2.1 Compile Program False Positive Normal
2.2 Lynx and Ping False Positive Normal
2.3 Change Directory False Positive Attack
2.4 Modify Sensitive File False Positive Attack

Malicious Goal Reference Red Team Exercise Score Test Result Classification
1.1 Normal User Find Blue Team Victory Attack
1.2 Find and Cat Command
Combined

Red Team Victory, Missed Missed

1.3 Find and Cat Command
Combined

Red Team Victory, Slow Attack

1.4 Manual Directory
Transversal

Blue Team Victory Attack

1.5 Changing to tcsh Not Scored Not Scored
1.6 File Hard Link as Root Red Team Victory, No

Response
Attack

1.7 File Hard Link as
Normal User

Blue Team Victory Attack

1.8 Cat Find as Root Red Team Victory, No
Response

Attack

1.9 Cat Find as Netdump
User

Blue Team Victory Attack

1.10 Netcat File Binding Red Team Victory Attack

38

7.4 Conclusions
This report presents the Blue Team perspective on the Red Team Exercise, including
results of some additional tests after the Exercise. Overall, the Red Team Exercise was a
valuable experience, allowing us to improve our prototype system. In particular, the
sensor network was improved, and the interaction between the different system
components. A positive result was that our system was able to thwart some attacks on the
order of seconds, whereas the system was originally designed to respond on a slower
timescale of minutes. For insider attacks, fast response may be necessary at times, and a
preliminary response may alleviate this issue. Unfortunately, our prototype system
missed sufficient training. Furthermore the Red Team Exercise was able not able to test
our Search Engine Technology. Perhaps multiple Red Team Exercises, starting in the
design phase of the project, with Blue and Red Teams working closely together, are
desirable for subsequent programs.

39

7.5 Red Team Exercise Rules of Engagement

SRS Red Teaming Exercise

Reasoning About the Insider Threat

Date: October 6, 2005

Blue Teams:

 Eric van den Berg, Mitigating the Insider Threat Using High Dimensional Search
and Modeling (Red Team: Cigital)

 Bob Balzer, Detecting and Preventing Misuse of Privilege (Red Team: Sandia)

Red Teams:

 John Clem, Sandia, jfclem@sandia.gov, Phone: (505) 656-7220
 Mark Wilson, Cigital, mwilson@cigital.com, Phone: (703) 404-5828

White Team:

 Chris Do, MITRE, chrisdo@mitre.org, Phone: (703) 983-5239
 Lora Voas, MITRE, lvoas@mitre.org, Phone: (703) 983-6963

40

1.0 SRS Program Overview

The DARPA Self-Regenerative System (SRS) program is striving to create a new
generation of security and survivability technologies that are able to provide critical
functionality at all times in spite of accidental or deliberate faults. These technologies
will allow systems to learn, self-regenerate and automatically improve their ability to
deliver critical services in the event of a cyber attack or system fault. Specifically, the
SRS program goals are:

1. Provide 100% critical functionality at all times in spite of attacks
2. Learn its own vulnerabilities over time
3. Ameliorate those vulnerabilities
4. Regenerate service after attack
5. Improve survivability over time

To address these goals, the SRS program created four different research areas:

1. Biologically-Inspired Diversity
2. Cognitive Immunity and Regeneration
3. Granular, Scalable Redundancy
4. Reasoning About Insider Threat

Researchers from both academia and industry participate in the SRS program in an effort
to develop technologies that address each of the above research areas. The contents
within this document create a framework for validating technologies specific to
Reasoning About Insider Threat. A crucial part of this framework is Red Teaming.

Red Teaming, or Red Teaming exercise, is an effective way to evaluate the technologies
involved. The Red Teaming discussed throughout this document will consist of three
teams: the Red Team, the Blue Team, and the White Team. The Red Team tries to
identify weaknesses and vulnerabilities in the technology that is developed by the Blue
Team. The White Team acts as the arbitrator to ensure that all team members follow the
rules established for the exercise.

2.0 Exercise Objective

The goal of the Reasoning About Insider Threat research area is preempt insider attacks
and detect system overrun. The success criterion, or metric, for this research area is to
thwart or delay 10% of insider attacker goals. The objective of the Red Teaming exercise
outlined in this document is to comprehend under what circumstances the Blue Team
technology meets the success criterion.

For this exercise, the Blue Team shall create at least two user accounts for the Red Team
to use with different privileges. For each user account, the Red Team shall develop a list,

41

with concurrence from the Blue Team, of at least 10 malicious goals and 10 non-
malicious goals. This list shall be given to the White Team on the date of the exercise,
before the exercise begins.

On the date of the exercise, the Red Team shall use the accounts created by the Blue
Team in an effort to accomplish the malicious goals that were provided to the White
Team. New goals may be added to the list on the date of the exercise as deemed
appropriate. For any goals that the Red Team is unable to accomplish, the burden of
proof is on the Blue Team to provide evidence that their technology was able to thwart or
delay the attacker goals.

Since many of the technologies within SRS program are in the early prototype phase, this
document serve the purpose of setting a framework for a Red Teaming exercise but does
not set a rigid guideline that must be strictly followed. The intent of the Red Teaming
exercise is to understand the strengths and weakness of the technologies involved in the
SRS program. The remainder of this document specifies the Rules of Engagement (ROE)
for the exercise.

3.0 Rules of Engagement

3.1 Interactions Among Teams

The Red Teaming exercise will apply adversarial pressure as a strategy for achieving a
deeper understanding of each technology’s strengths and weaknesses. It is in the interest
of all participants for the exercise to cover as many meaningful areas of strength and
weakness as possible. The Blue, Red, and White teams are expected to work together
and share all necessary information to create an effective exercise. However, sensitive
information such as passwords and keys that would give any team an unfair advantage
shall not be shared.

3.2 Exercise Parameters

Initial Configuration

The Blue Team shall setup and configure their system, application, and all necessary
network infrastructures required for the exercise.

Prerequisites

If a Non-Disclosure Agreement (NDA) is required to release certain proprietary
information, participating companies shall sign the NDA before the date of the exercise.

Exercise Boundaries

 Physical access to the Blue Team system by the Red Team is prohibited

42

 Social engineering is prohibited
 The Blue Team is not allowed to modify any aspect of the system, except to

restart the application/service, once the exercise has commenced
 The Red Team is constrained to launching attacks only from locations that have

been pre-negotiated with the Blue Team
 Flooding is not allowed (both network and application based)
 DoS attacks of the specified application/service are allowed (e.g. buffer overflow,

crafted packets)
o Attacks that result in the disabling/termination of the application/service is

considered a successful attack for the Red Team

Red Team Access Point

The Blue Team shall give the Red Team appropriate access to the application with
enough privilege to perform the exercise. This may include multiple user accounts with
varying privileges. The type of access and privileges granted shall be negotiated between
the Blue and Red Team prior to the date of the exercise.

Timing

The exercise shall be considered complete if the White Team determines any of the
following conditions are met:

 The agreed upon time for the exercise has elapsed (typically 1 day)
 All attack have been executed
 The Blue Team is unable to restart the application/service
 The Red Team concedes

Post-exercise Discussion

The Red, Blue and White teams shall allocate 1 hour immediately after the exercise to
discuss and document the lessons learned from the exercise. The teams shall agree upon
a single one page report that minimally answers the following questions:

 What were the strong points of the Blue Team’s technology that allowed it to
achieve the success criterion?

 What were the limitations of the Blue Team’s technology that was identified as a
result of the exercise?

 What could the Red Team and Blue Team have done to improve the effectiveness
of the exercise in the future?

Additionally, the Red Team, Blue Team, White Team and DARPA shall schedule a
follow-up conference call a few days after the exercise to discuss, in more detail than the
one page report, the findings and lessons learned.

43

3.3 Roles and Responsibilities

The key participants include:

DARPA

 Program oversight and management

Blue Team
 Coordinate with the Red Team to ensure that the appropriate application/service is

being targeted
 Setup and configure accounts and privileges required by the Red Team to perform

the exercise
 Provide clear evidence for any insider goals that were thwarted or delayed
 Install and configure the necessary system, application, and all necessary network

infrastructures required for the exercise
 Provide read-only access to the Red Team to all requested information (e.g.

source code, documentation, transformation software, etc.) with the exception of
any password, private key, or confidential information that would give the Red
Team an unfair advantage during the exercise

 Provide the Red Team with any updates to the requested information

Red Team

 Work with the Blue Team to develop at least 10 malicious user goals and 10 non-
malicious user goals and use the user accounts created by the Blue Team to try to
accomplish those goals

 Provide the White Team with the list of malicious goals on the date of the
exercise

 Share vulnerability information with the Blue Team that are not directly related to
the application/service being evaluated by the exercise in order to allow the Blue
Team an opportunity to take corrective actions

White Team

 Develop the mini-guide for the exercise
 Monitor exercise execution and ensure that teams adhere to ROE throughout each

exercise
 Maintain an electronic journal that captures the appropriate information from the

exercise

 Monitor Blue and Red Team activities and provide oversight and arbitration as
necessary

 Prepare final report and analysis that describes the score results of the exercise

44

4.0 Exercise Scoring

At the end of the exercise, two types of percentages shall be calculated: (1) percentage
specific to a user, (2) percentage for all users.

To calculate the percentage of insider attacker goals that was either thwarted or delayed
for user u, let t = malicious goals thwarted or delayed for user u, and g = total number of
malicious goals for user u.

t ÷ g = Percentage of malicious goals thwarted or delayed for user u

The above calculation shall be performed for every user account created. If Percentage
of malicious goals thwarted or delayed for user u is greater than or equal to 10% then the
exercise metric is met for user u.

To calculate the false positive percentage for user u, let f = non-malicious goals thwarted
or delayed for user u, and n = total number of non-malicious goals for user u.

f ÷ n = False positive percentage for user u

For the second calculation, let T = sum of all malicious user goals thwarted or delayed,
and G = sum of all malicious user goals. The following formula is then used to calculate
the percentage of malicious insider attacker goals that were thwarted or delayed:

T ÷ G = Percentage of malicious insider attacker goals thwarted or delayed

If Percentage of malicious insider attacker goals thwarted or delayed is greater than or
equal to 10% then the exercise metric is met.

To calculate the false positive percentage for all users, let F = non-malicious goals
thwarted or delayed for all user, and N = total number of non-malicious goals for all user.

F ÷ N = False positive percentage for all user

7.6 Red Team Tests

Malicious Goals

 Test 1.1: Normal User Find

1) Execute the find command as a regular user on the system

45

2) Host: Agra, Directory: /var/working/levela1a, Keyword: Undercover_Assets.mdb

3) Blue Team Win

4) Command executed by the Red Team: `find /var/working/ -type f –exec grep –H
Undercover_Assets.mdb{} \;`

5) Test had to be restarted: Error occurred when Red Team login and executed the
‘pwd’ command prior to the ‘find’ command. System was not trained and responded
negatively.

6) When the test was executed properly, the Blue Team system was able to disconnect
the Red Team when the ‘Find’ command was executed.

 Test 1.2: Find and Cat Command Combined

7) This test was similar to 1.1, as the ‘cat’ command was appended to the ‘find’
command.

8) Host: Agra, Directory: /var/working/levela1a, Keyword: Local_Employees.xls

9) Red Team Win

10) Command executed by the Red Team: ‘cat `find /var/working –type f –exec grep –
H Undercover_Assets.mdb {} \;`’

11) Test had to be rerun due to anomalous activities were flagged before the test was
started.

12) Scored for the Red Team because the file content was printed to screen before the
response mechanism responded.

 Test 1.3: Find and Cat Command Combined

1) This test was similar to 1.2 on a different machine with more files

2) Host: Kunming, Directory: /var/working/level_1A, Keyword: Suppliers.xls

3) Red Team Win

4) Same result as 1.2: the file was printed to screen before the Red Team was
disconnected

5) Blue team re-configured the system to respond quicker to the test string

 Test 1.4: Manual Directory Transversal

1) Instead of executing the ‘find’ command, the Red Team manually transverse the
directory structure of a host and ‘grep’ each file

2) Host: Portland, Directory: /var/working/level_1C, Keyword:
Strategic_Assessments.doc

3) Blue Team Win

4) Red Team was disconnected trying to ‘grep’ a sensitive file.

 Test 1.5: Change to tcsh

1) Change the default shell from /bin/bash to /bin/tcsh

46

2) Not scored

 Test 1.6: File Hard Link as Root

1) Create a hard link to one of the sensitive files and attempt to read the link

2) Host: Beijing, Directory: /var/working/level_1B, Keyword: Delivery_info.doc

3) Red Team Win

4) Red Team was able to read the file without triggering an alert.

 Test 1.7: File Hard Link as Normal User

1) Similar to 1.6 but the link was created as a normal user instead of root

2) Host; Delft, Directory: /var/working/level_1B, Keyword: Road_infrastructure.pcx

3) Blue Team Win

4) Blue team system triggered as anomalous behavior by Normal user

 Test 1.8: CAT Find as Root

1) Execute the ‘cat’ and ‘find’ command as the root user

2) Host: Bejing, Directory /var/working/level_1B, Keyword: Undercover_Assets.mdb

3) Red Team Win

4) Red Team used a back tic (`) in the command line and found that would circumvent
the Blue Team system effectively

5) Command line: ‘cat `find /var/working/ -type f –exec grep –H
Undercover_Assets.mdb {} \;`’

6) This test was similar to 1.2, although the Blue Team won on that test because the
system exhibited different behavior for a regular user and a root user. The Blue
Team won on 1.2 but on subsequent tests, the runs were not detected at all. This
was retested to understand why: the Blue Team reasoning was that SE Linux, a
platform used by the sensor network, suppressed identical events within a defined
time window.

 Test 1.9: Cat Find as Netdump User

1) Change to a low level user, netdump, and execute the same ‘cat find’ command as
1.8

2) Host: Utrecht, Directory: /var/working/level_1C, Keyword: Troop_Movements.xls

3) Blue Team Win

4) Detected as anomalous behavior.

 Test 1.10: NetCat File Binding

1) Run NetCat to bind a file to a port that will print out the content of a sensitive file

2) Host: Utrecht, Directory: /var/working/level_1C, Keyword: Troup_Movements.xls

47

3) Red Team Win

4) The Red Team was able to bind a file using NetCat to a port and then Telnet to that
port to capture the file without triggering an alert.

Non-Malicious Goals

 Test 2.1: Compile Program

1) As a normal user create a C program, compile it and execute. This is a simple ‘hello
world’ program that should not trigger any anomalous activity.

2) Host: Ooty_1, Directory: /var/working/level_1a

3) False Positive

4) This initially caused the Blue Team system to lock and the system had to be
restarted. After restarting, the compiling and execution of the program triggered an
anomalous activity.

 Test 2.2: Lynx and Ping

1) Use Lynx and Ping to simulate normal user activity surfing the Internet

2) Host: Ooty-1, Directory: /var/working/level_1b,

3) False Positive

4) The Blue Team system crashed and the activity was flagged as anomalous.

 Test 2.3: Change Directory

1) Change directory in /var/working

2) Host: Portland, Directory: /var/working

3) False Positive

4) Test was similar to 1.4, by changing into the /var/working directory triggered an
anomalous activity

 Test 2.4: Modify Sensitive File

1) The system was trained to allow specific user to modify a sensitive file. This test was
considered normal behavior and should not trigger an anomalous event.

2) Host: Ooty_1, Directory: /var/working

3) False Positive

4) Anomalous event was triggered even though this was considered normal behavior
and the system was “trained” to allow this type of activity.

48

List of symbols, abbreviations and acronyms

GUI = Graphical User Interface
IDMEF = Intrusion Detection Message Exchange Format
IDS = Intrusion Detection System
LSI = Latent Semantic Indexing
LSM = Linux Security Modules
MAPIT = Modeler and Auditor Program for Insider Threat
PAM = Pluggable Authentication Modules
PCA = Principle Component Analysis
SE-Linux = Security Enhanced-Linux
SVD = Singular Value Decomposition
SFW = Smart Firewalls
XML = extensible Markup Language

